Theoret. chim. Acta (Berl.) 29, 313--317 (1973) 9 by Springer-Verlag 1973

S esquiacetylenes

J. Y. Becker, A. Y. Meyer, and J. Klein Department of Organic Chemistry, Hebrew University, Jerusalem

Received March 23, 1972

All-valence-electron SCF calculations support the linear "sesquiacetylenic" geometry in propargylic dianions. The two accompanying univalent cations are close to the central carbon, with an angle $MC²M$ of 90^o. The migration of lithium in allylic systems is interpreted as an intramolecular sigmatropic rearrangement.

SCF-Rechnungen unter Benutzung aller Valenzelektronen stiitzen die lineare "sesquiacetylen' iihnliche Geometrie in Propargyldianionen. Die beiden zugeh6rigen Kationen befinden sich in der Nähe des zentralen Kohlenstoffatoms und bilden einen MC² M-Winkel von 90°. Die Wanderung des Lithiums in allylartigen Systemen wird als intramolekulare sigmatrope Umlagerung interpretiert.

Des calculs SCF pour tous les électrons de valence sont en faveur de la géométrie linéaire ~sesquiac6tyl6nique~ dans les dianions propargyliques, Les deux cations univalents correspondants sont proches du carbone central avec un angle $MC²M$ de 90°. La migration du lithium dans les systèmes allyliques est interprétée comme un réarrangement intramoléculaire sigmatrope.

It has been shown $[1-4]$ that two or more protons can be abstracted from a propargylic system $(RCH_2C=CCH_2R)$ and that this abstraction occurs preferentially on the same carbon [4], leading to $[RCH_2C=CCR]^{-2}$ rather than to $[RCHC=CCHR]^{-2}$. Also, in PhC=CCH₃, the second proton is removed faster than the first, so that 1 mole of BuLi produces half a mole of dianion, no monoanion being detectable [4]. Furthermore [4], the NMR spectrum of $[RCH=CHCC=CR]$ ⁻² shows that, unlike in monoanions, the charge is localized in the propargylic system. The phenomena were attributed to the stability of an eight-pi-electron system, when based on a linear, terminally substituted, three-carbon segment. The arrangement was termed [4] extendedacetylene or sesquiacetylene.

Here we report that $SCF-MO$ calculations, of the CNDO/2-type [5], support the hypothesis of linearity and indicate that the sesquiacetylenic structure (I) is more stable than a twisted, allenic disposition *(II).* In these calculations, performed by a current [6] computer-program, we considered as

models several geometries of dianions derivable from propyne $(CH_3C\equiv CH)$ and 2-butyne $(CH_3C \equiv CCH_3)$. Geometrical details and computed energies are given in Tables 1 and 2. Despite certain limitations of the method [7], the energies are expected to reflect the order of stability of the various species.

As for input geometries, both allenic and acetylenic bond-lengths, as well as intermediate situations, were examined; in the Tables, however, only results for *lowest-energy* structures are reported. For example, in the case of $C^{1}H_{3}C^{2}C^{3}C^{4}H$ (fifth species in Table 1), the energy was found to augment steadily as one passes from the acetylenic arrangement $[r(C^2C^3) = r(C^3C^4) = 1.20 \text{ Å};$ $E = -843.04 \text{ eV}$ to the allenic $[r(C^2C^3) = r(C^3C^4) = 1.31 \text{ Å}; E = -838.56 \text{ eV}$. Also, at each value of $r(CC)$, the stablest arrangement has $r(C⁴H) = 1.08 \text{ Å}$ [values in the range 1.060 Å (allenic) to 1.096 Å (tetrahedral) were examined]. Accordingly, Table 1 reports only the case with $r(C^2C^3) = r(C^3C^4) = 1.20 \text{ Å}$, $r(C^4H) = 1.08 \text{ Å}.$

For the derivative of propyne ([CHCCH]^{-2}) , a sesquiacetylenic linear structure, with equal CC-bond lengths, is found (Table 1) to be more stable, and to correspond to higher bond-populations, than any allenic arrangement; it is also endowed of a more pronounced charge-alternation. As for the Li atoms, it is seen (Table 2) that the optimal arrangement has them close to the central carbon (C^2) , with an angle LiC²Li of 90° *(III)*; an angle of 180°, although characterized by a lower $Li-Li$ repulsion, still corresponds to a higher total energy.

The two, almost degenerate, highest-occupied molecular orbitals have the following (overlap-renormalized) forms:

$$
\varphi(\text{HOMO}) = 0.4 [x (C^1) - x (C^3) - z (C^1) + z (C^3)]
$$

+ 0.3 [y (Li¹) + y (Li²)] + ...

$$
\varphi(\text{HOMO} - 1) = 0.46 [x (C^1) - x (C^3) + z (C^1) - z (C^3)]
$$

+ 0.2 [y (Li¹) - y (Li²)] + ...

Dianion structure		Energy (eV) Atomic population		Overlap population	
		Carbon	Hydrogen	CC	CH
I^a , $R' = R = H$	-600.46	C^1 , -0.905 C^2 , +0.185	-0.188	1.506	0.788
$I,^{\rm b} R' = R = H$	-599.18	C^1 , -0.852 C^2 , +0.042	-0.169	1.419	0.790
$H,^{\rm b} R' = R = H$	-600.12	C^1 , -0.776 C^2 , -0.040	-0.204	1.209	0.547
$C^1H_3C^2 \equiv C^3C^4 \cdots H^c$	-842.71	C^1 , +0.146 C^2 , -0.643 C^3 , +0.115 C^4 , -0.780	H^1 , -0.220 H^4 , -0.178	C^1C^2 , 1.115 C^2C^3 , 1.423 C^3C^4 , 1.169	$C^{1}H$, 0.611 $C4H$, 0.522
$C^{1}H_{3}C^{2} \equiv C^{3} - C^{4} - H^{d} - 843.04$		C^1 , +0.176 C^2 , -0.693 C^3 , +0.182 C^4 , -0.768	H^1 , -0.244 H^4 , -0.167	C^1C^2 , 1.157 C^2C^3 , 1.431 C^3C^4 , 1.576	$C^{1}H$, 0.591 $C^{4}H$, 0.789
$C^2 = C^3 = C^4$	-840.31	C^1 , +0.163 C^2 , -0.668 C^3 , +0.032 C^4 , -0.816	H^1 , -0.211 H^4 , -0.080	C^1C^2 , 0.872 C^2C^3 , 1.182 C^3C^4 , 1.184	$C^{1}H$, 0.635 C^4H , 0.491
$\sum_{x \to 0}$ = C ³ = C ⁴ – H ^f – 838.92 C^1H_3		C^1 , +0.150 C^2 , -0.909 C^3 , -0.026 C^4 , -0.455	H^1 , -0.207 H^4 , -0.138	C^1C^2 , 0.784 C^2C^3 , 0.904 C^3C^4 , 1.583	$C^{1}H$, 0.643 $C^{4}H$, 0.797
$C^2 - C^3 \equiv C^4 - H^8$ $\rm C^1H_3$	-840.91	C^1 , +0.204 C^2 , -0.745 C^3 , +0.049 C^4 , -0.592	H^1 , -0.261 H^4 , -0.133	C^1C^2 , 0.921 C^2C^3 , 0.869 C^3C^4 , 1.633	$C^{1}H$, 0,583 $C4H$, 0.796

Table 1. CNDO/2 results for dianions

- ^a Distance $r(C^1C^2) = r(C^2C^3) = 1.202 \text{ Å}$, as in acetylenes [12, 13], $r(C^1H) = r(C^2H) = 1.060 \text{ Å}$, as in acetylene [14].
- ^b $r(C^1C^2) = r(\overline{C}^2C^3) = 1.310$, $r(C^1H) = r(C^3H) = 1.070$ Å, as in allene [13].
- $r(C^1C^2) = 1.460 \text{ Å}$ as in propyne [12, 13], $r(C^2C^3) = r(C^3C^4) = 1.203 \text{ Å}$, $r(C^1H) = r(C^4H) = 1.096 \text{ Å}$ [12]; C¹ and C⁴ tetrahedral, with lone pairs occupying ligand positions.
- $r(C^1C^2) = 1.460$ [12, 13], $r(C^2C^3) = r(C^3C^4) = 1.200$, $r(C^1H) = 1.096$, $r(C^4H) = 1.080$ Å [12]; $C¹$ tetrahedral, $C⁴$ linear.
- $r (C^1 C^2) = 1.460$ [12, 13], $r (C^2 C^3) = r (C^3 C^4) = 1.310$ as in allene [12], $r (C^1 H) = 1.096$, $r (C^4 H) = 1.080$ Å [12]; C^2 and C^4 trigonal, with lone pairs occupying ligand positions.
- \bar{r} \bar{r} (\bar{C}^1C^2) = 1.540 [14], $r(C^2C^3)$ = 1.460 [12, 13], $r(\bar{C}^3C^4)$ = 1.212 [12], $r(C^1H)$ = 1.096 [12], $r(C⁴H) = 1.057$ Å as in acetylene [14]; $C²$ tetrahedral, with lone pairs occupying ligand positions.
- $\frac{1}{2}$ As in f, but C^2 trigonal.

Dilithio derivative^a Energy (eV) Atomic population **Overlap population** Carbon Lithium Hydrogen CC CLi CH Li **J** $H-C¹:::C²:::C³-H^b -647.11$ $C¹$, $-0.481 +0.260 +0.112$ 1.342 0.154 0.798 C^2 , +0.217 Li Li $H - C¹:::C²:::C³ - H^c - 644.99$ $C¹$, -0.586 $+0.389$ $+0.097$ 1.335 0.183 0.778 C^2 , +0.202 Li Li **1** $H - C¹:::C²:::C³ - H^d - 644.32$ $C¹$, $-0.492 +0.256 +0.118$ 1.381 0.339 0.768 C^2 , +0.237 Li Li $H - C¹$::: C²::: C³ – H^{*} – 642.49 C¹, – 0.601 + 0.390 + 0.096 1.384 0.387 0.763 C^2 , +0.023 Li H H' ${}^{11}C = C = C$ -641.59 C^{1} , -0.439 $+0.349$ $+0.039$ 1.240 0.682 0.682 C^2 , +0.103 Li Li

Table 2. CNDO/2 results for dilithio derivatives of propyne

^a The following were taken for all structures, except the last: $r(C^1C^2)=r(C^2C^3)=1.202\text{ Å}$, as in acetylenes [12, 13], r (CLi) = 2.2Å, as the shortest CLi-bond in solid CH₃Li [15] and CH₃CH₂Li [16], $r(CH) = 1.060$ Å [14], angle HCC of 180°. For the last (allenic): $r(C^1C^2) = r(C^2C^3) = 1.310$, $r(CH) = 1.070 \text{ Å}$, as in allene [12], $r(CLi) = 2.2 \text{ Å}$ [15, 16], angle HCC of 120°.

 b LiC²Li = 90°.

 $^{\circ}$ LiC²Li = 180 $^{\circ}$.

- ^d LiC¹C³Li torsion angle 90°.
- $^{\circ}$ LiC¹C³Li torsion angle 180 $^{\circ}$.

 f HCLi = 120 $^{\circ}$.

We note that the contribution of $C²$ is here insignificant, and that electrons are distributed mainly in $2p_x$ orbitals of Li and in the perpendicular $2p_x$ and $2p_z$ of the terminal carbons. φ (HOMO) also corresponds to a pi-bond between the two Li-atoms. The lithium p_v bridges thus C¹ and C³, while C² is in the MO node *(III).* Hence, incidentally, an explanation for the easy migration of Li in allylic systems [8-10], which we interpret as *intramolecular,* rather than intermolecular, and accompanied by inversion. It is thus an allowed [11] sigmatropic rearrangement.

The bond between the lithiums and $C²$ evolves from deeper MO's and has some pi-character. This is illustrated by the following (last MO but one):

$$
\varphi = 0.14 \left[H^1 - H^2 \right] + 0.46 \left[s(C^1) - s(C^3) \right] - 0.28 y(C^2) - 0.07 \left[y(L^1)^1 + y(L^2)^2 \right].
$$

Sesquiacetylenes 317

References

- 1. Eberly, K.C., Adams, H.E.: J. organomet. Chem. 3, 165 (1967).
- 2. West, R., Correy, P.A., Mines, I.C.: J. Amer. chem. Soc. 87, 3788 (1965). West, R, Jones, P.C.: J. Amer. chem. Soc. 91, 6156 (1969).
- 3. Mulvaney, J.E., Folk, I.C,, Newtor, D.J.: J. org. Chem. 32, 1674 (1967).
- 4. Klein, J., Brenner, S.: J. Amer. chem. Soc. 91, 3094 (1969). J. organomet. Chem. 18, 291 (1969). - Tetrahedron 26, 2345, 5807 (1970). Klein, J, Gurfinkel, E.: J. org. Chem. 34, 3952 (1969).
- 5. Popte, J.A., Segal, G.A.: J. chem. Physics 44, S 3289 (1966).
- 6. Clark, P.A., Ragle, J.L.: CNDOTWO-SCF-LCAO-MO, QCPE Catalogue, Vol. VII (1971), program 100, Indiana University.
- 7. Daudel, R., Pullman, A. (Eds.). Aspects de la chimie quantique contemporaine, pp. 34-48. Paris: Editions du CNRS 1971.
- 8. Johnson, C.S., Wiener, M.A., Waugh, J.S., Seyferth, D.: J. Amer. chem. Soc. 83, 1306 (1961).
- 9. Seyferth, D., Jula, T.F.: J. organomet. Chem. 8, 13 (1967).
- 10. Freedman, H. H., Sandel, V. R., Thill, B. P.: J. Amer. chem. Soc. 89, 1762 (1967). West, R., Purmort, J.I., McKinley, S.V.: J. Amer. chem. Soc. 90, 797 (1968). Waack, R., Doran, M.: J. Amer. chem. Soc. 85, 1651 (1963). Kuwata, K.: Bull. chem. Soc. Japan 33, 1091 (1960).
- 11. Woodward, R. B., Hoffmann, R.: Angew. Chem. international Ed. 8, 781 (1969).
- 12. Sutton,L.E. (Scient. Editor): Tables of interatomic distances and configuration in molecules and ions. London: The Chemical Society 1958 and 1965.
- 13. Cartmell, E., Fowler, G.W.A.: Valence and molecular structure, 3rd Ed., p. 126 and 151. London: Butterworths 1966.
- 14. Cottrell, T.L.: The strength of chemical bonds, p. 272. London: Butterworths 1954.
- 15. Weiss, E., Lucken, E.A.C.: J. organomet. Chem. 2, 200 (1964).
- 16. Dietrich, H.: Acta crystallogr. 16, 681 (1963).

Dr. A. Y. Meyer Department of Organic Chemistry Hebrew University Jerusalem, Israel